Unlocking solar heat

28 february 2024

Theo Venema

WarmteStad

- 240k inhabitants, 120k houses
- Biggest European gasfield (1959)
- Local heat distribution company since 2014
 - Provide renewable and affordable (collective) heat
 - Municipality and Watercompany
 - 80 employees serving 8.000 households (2023)

- Ambition

- 2030: 20.000 houses

2035: 30.000 houses

- 2050: 50.000 houses

Our customers

- Housing associations, homeowners, companies, schools, government etc.
- Construction period 65% before 1980
 - design heating temperature 90°C
- Our proposition
 - Collective renewable heat at <u>65°C</u>
 - Comparable costs as natural gas heating

Our heat sources

- Delivery temperature >65°C
 - Waste heat datacenters (50%)
 - Solar Thermal (20%)
 - Natural gas (30%)
 - 2035: 0%
- Technology
 - Heatpumps
 - Combined heat and power
 - Gasfired boilers
 - Seasonal storage

The challenge: matching supply vs demand

Demand vs production of wasteheat

Demand vs production of wasteheat + solarheat

Summer surplus

Summer surplus -> seasonal storage

ATES

- Limited temperatures (wasteheat)
- Proven technolog
- Standard materials
- Limited investments
- No surface area needed
- Allows for both MT as LT storage
- Huge capacity

Cross section of the ATES

Charge dillema

- Waste heat = free, low temperature, easy to store
- Solar heat = buy <u>AND</u> use
 - Direct use in heatgrid
 - Day tankstorage
 - Seasonal storage -> heatpump -> extra electricity costs!

- Seasonal supply solar heat can vary
 - Fill seasonal storage 100% with free waste heat -> no capacity for solar left
 - Leave storage space for solar -> less stored waste heat for use in winter time
- Other questions (unloading profile, sizing, additional heatsources)

So many questions....

- Effect studies
 - New / other heat sources
 - More / less storage capacity
 - Growing heat demand
- Optimal loading strategy
 - PEF, CO₂, NO_X, €

Research using a digital twin

Project and research supported with DEI+ subsidy from 'Rijksdienst voor Ondernemend Nederland'

Results

- Seasonal heat storage
 - Enables combining competitive renewable heatsources
 - unlocks the use of solarheat!
 - Storing waste heat in summer for use in wintertime
 - Mitigates 'take or pay' risk solarheat
 - Substantially improvement of share of renewable heat in the heatgrid
 - Enabling a diversity of heatsources, making the total heatsystem more robust and less vulnerable for changes in demand or production

Seasonal storage is the key to unlock Solarheat

Daniël Bakker

Dirk Vries

+31 30 606 9671

Dirk.Vries@kwrwater.nl

Els van der Roest

Theo Venema +31 6 20 441 329

Marette Zwamborn

Daniel.Bakker@kwrwater.nl